Classification method for defect images based on association and clustering
نویسندگان
چکیده
Clustering of the images stored in a large database is one of the basic tasks in image database mining. In this paper we present a clustering method for an industrial imaging application. This application is a defect detection system that is used in paper industry. The system produces gray level images from the defects that occur at the paper surface and it stores them into an image database. These defects are caused by different reasons, and it is important to associate the defect causes with different types of defect images. In the clustering procedure presented in this paper, the image database is indexed using certain distinguishing features extracted from the database images. The clustering is made using an algorithm, which is based on the k-nearest neighbor classifier. Using this algorithm, arbitrarily shaped clusters can be formed in the feature space. The algorithm is applied to the database images in hierarchical way, and therefore it is possible to use several different feature spaces in the clustering procedure. The images in the obtained clusters are associated with the real defect causes in the industrial process. The experimental results show that the clusters agree well with the traditional classification of the defects.
منابع مشابه
Detection of lung cancer using CT images based on novel PSO clustering
Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملRobust Method for E-Maximization and Hierarchical Clustering of Image Classification
We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...
متن کاملOil Reservoirs Classification Using Fuzzy Clustering (RESEARCH NOTE)
Enhanced Oil Recovery (EOR) is a well-known method to increase oil production from oil reservoirs. Applying EOR to a new reservoir is a costly and time consuming process. Incorporating available knowledge of oil reservoirs in the EOR process eliminates these costs and saves operational time and work. This work presents a universal method to apply EOR to reservoirs based on the available data by...
متن کاملImage Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach
Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003